A TEMPERATURE FIELD PROBLEM
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The problem of the temperature field in bodies with heat release and with internal cooling chan-
nels in the presence of external heat transfer is solved through the introduction of the concept
of sink intensity.

In performing the thermal calculations for materials with internal heat sources we frequently en-
counter the problem of determining the temperature field of individual elements with internal cooling chan-
nels. Here we are interested in finding the true efficiency of the cooling channel, determined by the amount
of heat removed, In thermophysics such problems are usually solved by specifying the cooling channel in
the form of a boundary condition of the third kind or by matching the solutions for various regions, This ap-
proach makes it possible to achieve a solution for materials [bodies] cylindrical in shape, with a coaxial
channel,

In the general case, the channel may be positioned arbitrarily, and then these methods will not be
suitable to find a solution for the stated problem, although an approximate idea of the temperature field can
be obtained by replacing the concentrated chennel with one that is distributed as a consequence of an equiv-
alent increase in the external heat transfer.

It is therefore held to be necessary that the calculation of the heating of such bodies is performed by
specifying the channel in the form of a linear sink, situated in the center of the channel. The quantity of
heat removed by such a cooling channel can be determined experimentally from the data for the superheating
of the cooling medium at the ends of the channel and from the flow rate of the cooling medium. Since it is
difficult to achieve such data in a number of cases, we are interested in determining the intensity of the
sink in a theoretical manner, bearing in mind the true dimensions of the channel, i.e,, the channel is not
drawn out into a line, but is treated as a three-dimensional sink with an intensity W,

Let us consider a body (Fig.1) in the shape of a hollow cylinder in which the intensity of the internal
heat sources is a function of both v and z. The heat evolved in the body is transmitted to the external cool-
ing medium and into the internal cooling channel., We will restrict ourselves to the problem in which the
channel intensity W = const = Wy, which corresponds to the case of small channel dimensions and an in-

significant tangential temperature gradient across the
g Zy A channel,
The temperature field in such a body will then be
< ‘\\ determined from the following boundary-value problem;
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Fig.1. Theoretical model.
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TABLE 1. Temperature (°C) of the Intermediate Insert of a 300 MW

Turbogenerator
L. y.m
xm 0 | oo | 0,052 | 0,080 | 0,140
!
0 69,0 1 66,7 63,4 1 63,0 ' 68
0,05 63,5 55,0 49,5 | 48,8 | 53,8
0,1 58,6 1 52,2 47,0 I 46,0 | 60,0
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The second term in the right-hand member of (1) describes the removal of heat in the cooling channel, with
consideration given to the absence of losses in the channel itself. In this case, we use the Heaviside unit 7~
function
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Equation (1) with the specified boundary conditions (1b) is turned into an ordinary differential equation by
applying the finite integral transform to the function ®(r, z) with respect to the variable z with a kernel of
the form

COS(ﬁnZ—‘;— 671)7 n= 1; 2, ...

The constants g, and &, are determined from the following equations:

A, — %
" A o
ctg B,z = %_,r—gt;m 8, = —arctg . (3

The solution of the boundary-value problem (1), (1a), and (1b) will depend on W. We then compile the equa-
tion for W, using Newton's formula for the channel walls, i.e.,

W =0a[®(, z, W)—6,]. (4)

From this expression we see that the sink intensity W, in the general case, is a function of the coordinates
r and z of the channel region. However, for the case under consideration, as indicated above, we must
choose the average IW for the walls. With a uniform distribution of the specific losses along r, the sink
intensity is therefore determined from (4), compiled for the point (rg, zg + h1/2).

However, if P(r, z) changes markedly in the channel region along r, we have to compile yet another
equation, in analogous fashion, for the point (v, +hy, z, + h,/2) andtakingthe average value of W,

n

If the body has n channels removing heat expressed by z Wihyih,yili, we compile the following system
of equations: i=1

l,—W/,- = 0; [@ (roi, 20i+ %i‘i—, Wiv Wz, ey Wn) -—-@OiJ s (43.)

i=1,2 ..., n

Joint consideration of the boundary-value problem (1), (1a), (1b), and (4) makes it possible to deter-
mine the magnitude of the heat removed to the channel and the temperature field of the body. It would not
be reasonable to present the expressions for these quantities in general form in view of their cumbersome
form; we will therefore illustrate the proposed method with one of the problems of heating in electrical
equipment with liquid cooling, where the rotating electromagnetic fields lead to the evolution of heat in fer-
romagnetic components that are symmetrical with respect to the shaft of the equipment. The specific losses
within such components are independent of ¢, and intensive cooling of such components, as a rule, results
in only slight heating of the liquid in the channel.

591



Ch
i £

T
y/l-__.

Fig.2. End portion of a powerful turbogenerator (a) (Ch
denotes channels with the cooling liquid) and a cross sec-
tion of the intermediate insert (b) in the efgh plane (y,

- ¥y =h,.

The above can be referred to most of the elements in the forward zone (Fig. 2) of powerful turbogen-
erators for which the problem of heating is currently very important [1].

We will illustrate this method of heating calculations for bodies with internal cooling channels on the
example of an element whose dimensions — to simplify the calculations — permit us to change to rectangular
coordinates.

As such an example we will determine the efficiency of the cooling channel in the intermediate insert
of a turbogenerator developing a power of 300 MW (Fig.2b). The insert is insulated from the housing of the
bearing along the line gh. We have intensive heat transfer from the surfaces ef and fg to the gas being
cooled, while the transfer of heat from the surface eh can be neglected. The boundary conditions will then
have the form
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Bearing the above in mind, in a rectangular system of coordinates, we find the temperature function
in the form

0=V 0, +8,) 10, (6)
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i, (y——h) o<y <Y

for @y = Oy
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The numerical values in these formulas for the insert were P = 600 kW/m?, Xy =0.1m, y5 =0.14 m,
x;=0.054 m, L =1.60 m, x, = 0.072 m, y; = 0.052 m, h, =0.037 m, oy = &y =514 W/m?-°C, A =48 W/m?
.°C, ©; = 46°C, and @, = 62°C.

Substituting these expressions for temperature into (4), with the cooling water at a temperature of
20°C and a heat-transfer coefficient o = 4.4 kW/m?. °C, we find that the losses removed with the water
amount to 12.58 kW. Thus 94.5% of all the evolved losses in the insert are removed to the channel, which
indicates its high efficiency. On the other hand, the losses removedby the water, as determined experi-
mentally by means of calorimetry [2], amount to 12.8 kW,

Comparison of the theoretical and experimental loss magnitudes confirms the validity of the chosen

method.

We can find the temperature field (see Table 1) of the intermediate insert by means of the working
formulas (6)-(6a).
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NOTATION

is the temperature of the ambient medium for the four sides of the transverse cross section
of the cylinder;

are the coefficients of heat transfer for the cylinder surfaces;

are the inside and outside radii and the instantaneous radial coordinate of the cylinder;

are, respectively, the axial coordinate and the length of the cylinder;

is the angular coordinate;

is the function of the specific losses in the cylinder;

is the Heaviside unit function;

are the dimensions and coordinates of channel position in the cylinder;

is the channel length;

is the ratio of channel volume to channel surface;

is the intensity of the three-dimensional sink, determined by the magnitude of the losses
removed per unit volume of channel;

is'the coefficient of thermal conductivity;

are the dimensions of the lateral cross section of the insert in the coordinates x and y;

are the channel coordinates in the lateral cross section of the insert;

are the constant kernels of the integral transform;

are, respectively, the coefficient of heat transfer and the temperature of the cooling medium
in the internal channel.
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